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ABSTRACT
In this paper we investigate a concrete epistemic situation:
there are agents (humans, robots, cameras,...) and propo-
sitions (lamps on or off, obstacles dangerous or not,...) lo-
cated in Lineland. We express properties with the standard
epistemic logic language like “Agent A knows that agent B
knows that lamp L is on”. We give some words about model-
checking, satisfiability problem and common knowledge.

Categories and Subject Descriptors
I.2.4 [Theory]: Epistemic modal logic. Knowledge repre-
sentation.

General Terms
Theory

Keywords
Knowledge representation. Spatial reasoning. Epistemic
modal logic.

1. INTRODUCTION
In this article, we introduce a spatially grounded epistemic

logic based on the simple case: a line. Our approach is
different from [2] and even [4]. Here a model is directly a
drawing like Figure 1 or 2 and not a Kripke model. This is
motivated essentially because constructing the Kripke model
by hand for a problem (e.g. Muddy Children etc.) gives
the impression that we solve the problem by formalize it.
With our approach, a problem is directly represented by its
drawing (Figure 1).
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Figure 1: Muddy-children

This logic provides a pedagogic graphical model-checker
for students1based on the same idea that [1]. On the other

1You can find a model-checker implemented in Java/Scheme
at http://www.irit.fr/~Francois.Schwarzentruber/
agentsandlamps/, .
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Figure 2: Example of a world

hands, it may have some application in spatial reasoning in
robotics or video games like in [3].

2. SYNTAX
Our logic is based on the language of S5n [2]:

Definition 1 (language).
Let ATM ,AGT be two countable sets of respectively atomic
propositions and agents. The language LAGT is defined by
the following rule:

ϕ ::= � | p | ϕ ∧ ϕ | ¬ϕ | Kaψ

where p ∈ ATM and a ∈ AGT.

As usual, ϕ ∨ ψ =def ¬(¬ϕ ∧ ¬ψ). K̂aψ =def ¬Ka¬ψ.
The formula p is read as“the lamp p is on”andKaψ means

“agent a knows that p is true”.

3. SEMANTICS
The semantics is not defined with a class of models but

geometrically. A world is a situation where all agents have a
location (position and direction where they look) in the line
and all lamps (atomic propositions) have a position and a
state (on or off). Formally:

Definition 2 (world).
A world w is a tuple 〈≤, d, π〉 where

• ≤ is a total order over AGT ∪ ATM ;

• d : AGT → {left, right};
• π : ATM → {⊥,�}.
The set of all worlds is noted W . The order ≤ enumer-

ates agents and lamps from left to right. d(a) denotes the
direction where the agent a looks. π is a valuation.

Example 1. The Figure 2 gives us an example of a world
〈≤, dAGT, π〉. We have:

• 1 ≤ p1 ≤ 2 ≤ p2 ≤ 3 ≤ p3;

• d(1) = right; d(2) = left; d(3) = left;

• π(p1) = �;π(p2) = ⊥;π(p3) = �;
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Now we are going to define the epistemic relation over worlds.
wRau means that agent a can not distinguish w from u, i.e.
agent a sees the same things in w and u. Formally:

Definition 3 (epistemic relation).
Let a ∈ AGT. We define the epistemic relation Ra on the
set worlds W by wRav iff:

• If d(a) = right,

1. for all x ∈ AGT ∪ ATM , (a ≤w x iff a ≤v x);
2. for all x, y ∈ AGT ∪ ATM such that a ≤w x and

a ≤w y, we have (x ≤w y iff x ≤v y);
3. for all x ∈ AGT, a ≤w x implies dw(x) = dv(x);
4. for all x ∈ ATM , a ≤w x implies πw(x) = πv(x).

• Similarly, if d(a) = left replace ≤w by ≥w.

Briefly, suppose that wRau and that d(a) = right. In this
case, a ≤w x means x is on the left of a. As d(a) = right

means that a is looking to the left, a ≤w x means that a sees
x. The condition 1. means that agent a sees the same lamps
and agents in both w and v. The condition 2. means that if
two objects x or y are seen by a in w (and also in v because
it equivalent from 1.) then they are in the same order both
in w and v.The condition 3. means that an agent x seen by
a has the same direction both in w and v. The condition 4.
means that a lamp seen by agent a has the same state both
in w and v. If an object x is not seen by a in w, then 1. gives
it is also not seen in v but there is no more constraints over
the position, direction or state of the object. Until now, we
have finally defined a model M = 〈W, (Ra)a∈AGT, ν〉 where
ν maps each world w ∈ W to πw. From now, the truth
conditions is standard:

Definition 4 (truth conditions).
Let w ∈ W . We define w |= ϕ by induction:

• w |= p iff π(p) = �;

• Truth conditions for boolean connectives are standard;

• w |= Kaψ iff for all w′, wRaw
′ implies w′ |= ψ.

We say that a formula ϕ is valid iff ∀w ∈ W,w |= ϕ.

3.1 Some validities
Since Ra is an equivalence relation on W , then the axioms

T , 4 and 5 of classical epistemic logic are valid. But there
are more validities in L☼1D than in S5n.

The semantics of Kap in L☼1D corresponds to the fact that
the agent a sees the light p and the light p is on. Informally,
K1(p∨q) means that agent 1 has a proof that p∨q. In other
words, either he sees p on, or he sees q on. Hence, either
K1p or K1q. More generally:

Proposition 1. Let ϕ,ψ ∈ LAGT such that agents and
lamps appearing in ϕ and ψ are disjoint.
|=L☼1D K1(ϕ ∨ ψ) → K1ϕ ∨K1ψ.

Interestingly, we have |=L☼1D K1K2p∧K2K1p → (K1K2)
+p

where “(K1K2)
+” denotes any finite sequence of K1 and

K2. That is to say common knowledge comes only from
K1K2p ∧K2K1p like in Figure 3.

More surprising is the fact that common knowledge is not
guaranteed byK1K2ϕ∧K2K1ϕ for all ϕ. Consider the world
w of Figure 4. We have w |= K1K2¬K2p∧K2K1¬K2p. But,
we have w �|= K1K2K1¬K2p.
In fact, L☼1D lacks the property of uniform substitution.
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Figure 3: Common-knowledge of p
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Figure 4: w |= K1K2¬K2p∧K2K1¬K2p∧¬K1K2K1¬K2p

4. TWO DECISION PROBLEMS

4.1 Definitions
Definition 5 (model-checking of L☼1D ).

We call model-checking of L☼1D the following problem:

• Input: a formula ϕ ∈ LAGT, a world w (where only
atoms and agents occurring in ϕ are taken in account);

• Output: Yes iff we have w |=L☼1D ϕ. No, otherwise.

In the Definition 5, we do not care about propositions or
agents not in the formula ϕ. In particular, the data structure
for the order≤ is a finite list representing a permutation over
agents’ and propositions’ occurring in ϕ .

Definition 6 (L☼1D -satisfiability problem).
We call L☼1D -satisfiability problem the following problem:

• Input: a formula ϕ ∈ LAGT;

• Output: Yes iff there exists a w s.th. w |=L☼1D ϕ.

Proposition 2. The model-checking of L☼1D and satis-
fiability problem are in PSPACE.

Moreover, if AGT is infinite, we can reduce those two
problems to Quantified propositional logic satisfiability prob-
lem and then the two problems are indeed PSPACE-complete.

5. CONCLUSION
We have presented a spatially grounded epistemic logic.

One advantage is that a model is very close to the reality
it represents. Furthermore, model-checking and satisfiabil-
ity remains in PSPACE as for S5n. From now, there are
many perspectives: study in more details complexities when
AGT is finite, find an axiomatization. And above all study
Flatland...
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